
SAND REPORT
SAND2004-3268 (Updated December 2007)
Unlimited Release
Printed December 2007

Teuchos::RCP Beginner’s Guide

An Introduction to the Trilinos Smart
Reference-Counted Pointer Class for
(Almost) Automatic Dynamic Memory

Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

SAND2004-3268 (Updated December 2007)
Unlimited Release

Printed December 2007

Teuchos::RCP Beginner’s Guide
An Introduction to the Trilinos Smart Reference-Counted
Pointer Class for (Almost) Automatic Dynamic Memory

Management in C++

Roscoe A. Bartlett
Optimization and Uncertainty Estimation

Sandia National Laboratories∗, Albuquerque NM 87185 USA,

Abstract

Dynamic memory management in C++ is one of the most common areas of difficulty and
errors for amateur and expert C++ developers alike. The improper use of operator new and op-
erator delete is arguably the most common cause of incorrect program behavior and segmen-
tation faults in C++ programs. Here we introduce a templated concrete C++ class Teuchos-
::RCP, which is part of the Trilinos tools package Teuchos, that combines the concepts of
smart pointers and reference counting to build a low-overhead but effective tool for simplifying
dynamic memory management in C++. We discuss why the use of raw pointers for mem-
ory management, managed through explicit calls to operator new and operator delete, is so
difficult to accomplish without making mistakes and how programs that use raw pointers for
memory management can easily be modified to use RCP. In addition, explicit calls to operator
delete is fragile and results in memory leaks in the presents of C++ exceptions. In its most
basic usage, RCP automatically determines when operator delete should be called to free an
object allocated with operator new and is not fragile in the presents of exceptions. The class
also supports more sophisticated use cases as well. This document describes just the most basic
usage of RCP to allow developers to get started using it right away. However, more detailed in-
formation on the design and advanced features of RCP is provided by the companion document
“Teuchos::RCP : The Trilinos Smart Reference-Counted Pointer Class for (Almost) Automatic
Dynamic Memory Management in C++”.

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94AL85000.

3

Acknowledgments

The author would like to thank Carl Laird, Heidi Thornquist, Mike Heroux and Marzio Sala for
comments on earlier drafts of this document.

The format of this report is based on information found in [4].

4

Contents

1 Introduction . 7
2 An example C++ program. 9

2.1 Example C++ program using raw dynamic memory management 9
2.2 Refactored example C++ program using Teuchos::RCP . 12

3 Additional and advanced features of RCP . 14
4 Summary . 16
References . 17

Appendix

A C++ declarations for RCP . 19
B RCP quick-start and reference . 21
C Commandments for the use of RCP . 25
D Recommendations for passing objects to and from C++ functions . 27
E Listing: Example C++ program using raw dynamic memory management 29
F Listing: Refactored example C++ program using RCP . 31

5

6

Teuchos::RCP Beginner’s
Guide

An Introduction to the Trilinos Smart
Reference-Counted Pointer Class for

(Almost) Automatic Dynamic Memory
Management in C++

1 Introduction

The main purpose of this document is to provide a quick-start guide on how to incorporate the
reference-counting smart pointer class Teuchos::RCP into C++ programs that use dynamic memory
allocation and object orientation. This code is included in the Trilinos [3] tools package Teuchos.
The design of Teuchos::RCP is based partly on the interface for std::auto ptr<> and Items 28
and 29 in ”More Effective C++” [5]. In short, RCP allows one client to dynamically create an
object (using operator new for instance), pass the object around to other clients that need to access
the object and never require any client to explicitly call operator delete. The object will (almost
magically) be deleted when all of the clients remove their references to the object. In principle,
this is very similar to the type of garbage collection that is in languages like Perl and Java. There
are some pathological cases (such as the classic problem of circular references, see [5, Item 29,
page 212]) where RCP will result in a memory leak, but these situations can be avoided through
the careful use of RCP. However, realizing the potential of hands-off garbage collection with RCP
requires following some rules. These rules are partially spelled out in the form of commandments
in Appendix C.

Note that direct calls to operator delete are discouraged in modern C++ programs that are
designed to be robust in the presence of C++ exception handing. This is because the raw use of
operator delete often results in memory leaks when exceptions are thrown. For example, in the
code fragment:

void someFunction() {
A *a = new A;
a->f();
delete a;

}

if an exception is thrown in the function call a->f() then the statement delete a will never be

7

executed and a memory leak will have been created. The class std::auto ptr<> was added to the
standard C++ library (see [5, Items 9 and 10]) to protect against these types of memory leaks. For
example, the rewritten function:

void someFunction() {
std::auto_ptr<A> a(new A);
a->f();

}

is robust in the event of exceptions and no memory leak will occur. However, std::auto ptr<>
can not be used to share a resource between two or more clients and therefore is not an answer to
the issue of general garbage collection. The class RCP not only is robust in the event of exceptions
but also implements reference counting and is therefore more general (but admittedly more complex
and expensive) than std::auto ptr<>.

The use of RCP is critically important in the development and maintenance of large complex
object-oriented programs composed of many separately-developed pieces (such as Trilinos). This
discussion assumes that the reader has a basic familiarity and some programming experience with
C++ and has at least been exposed to the basic concepts of object-oriented programming (good
sources include [2] and [6]). Furthermore, the reader should be comfortable with the use of C++
pointers and references.

The appendices contain basic reference material for RCP. In many respects, the appendices are
the most important contribution of this document. For those readers that like to see the C++ decla-
rations right away, Appendix A contains the C++ declarations for the template class RCP and some
important associated non-member templated functions. Appendix B is a short reference-card-like
quick-start for the use of RCP. The quick-start in this appendix shows how to create RCP objects
from raw C++ pointers, how to represent different forms on constantness, cast from one pointer
type to another, access the underlying reference-counted object as well as to associate and manage
extra data. Appendix C gives some commandments for the use of RCP and reinforces the material
in Appendix B. Appendix D gives tables of recommended idioms for how to pass raw C++ objects
and RCP-wrapped objects to and from functions. Appendix E gives a listing for an example program
that uses raw pointer variables and direct calls to operator new and operator delete while Appendix
F shows a refactoring of this example program to use RCP.

Note! Anxious readers are encouraged to jump directly to Appendix E and F to get an idea of
what RCP is all about. This example, together with the reference material in the appendices, should
be enough for semi-experienced C++ developers to start using RCP right away.

For less anxious readers, in the following section, we describe why the use of raw C++ pointers
and raw calls to operator new and especially operator delete is difficult to program correctly in
even moderately complex C++ programs. We then discuss the different ways C++ pointers are
used in such programs and describe how to refactor these programs to replace some of the raw
C++ pointers and raw calls to operator delete with RCP. In the following discussion we will define

8

persisting and non-persisting associations and will make a distinction between them (see page 11).
RCP is recommended for use only with persisting associations. The consistent use of RCP extends the
vocabulary of C++ in helping to distinguish between these two types of relationships. In addition,
RCP is designed for the memory management of individual objects, not raw C++ arrays of objects.
Array allocation and deallocation should be performed using standard C++ containers such as std-
::vector<>, std::valarray<> or some other such convenient C++ array class but the best choice
is typically a debug range-checked class like Teuchos::Array. However, it is quite common to
dynamically allocate arrays of RCP objects and use RCP to manage the lifetime of such array class
objects.

2 An example C++ program

The use of object-oriented (OO) programing in C++ is the major motivation for the development
of RCP. OO programs are characterized by the use of abstract classes (i.e. interfaces) and concrete
subclasses (i.e. implementations). In OO programs it is common that the selection of which concrete
subclass(es) to use is not known until runtime. The “Abstract Factory” [2] is a popular design pattern
that allows the flexible runtime selection of what concrete subclasses to create.

Below we describe a fictitious program that demonstrates some of the typical features of an OO
program that uses dynamic memory management in C++. In this simple program, handling memory
management using raw C++ pointers and calls to operator new and operator delete will appear
fairly easy but larger more realistic OO programs are much more complicated and it is definitely not
easy to do memory management without some help.

2.1 Example C++ program using raw dynamic memory management

One of the predominate features of this example program is the use of the following abstract inter-
face base class UtilityBase that defines an interface to provide some useful capability.

class UtilityBase {
public:

virtual void f() const = 0;
};

In our example program, UtilityBase will have two subclasses where one or the other will be
used at runtime.

class UtilityA : public UtilityBase {
public:

9

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};

class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};

In this example program the above implementation functions just print to standard out.

Some of the clients in this program have to create UtilityBase objects without knowing ex-
actly what concrete subclasses are being used. This is accomplished through the use of the “Abstract
Factory” design pattern [2]. For UtilityBase, the abstract factory looks like

class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};

and has the following factory subclasses for creating UtilityA and UtilityB objects.

class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA(); }
};

class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB(); }
};

Now let’s assume that our example program has the following client classes.

// Simple client with no state
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};

// Client that maintains a pointer to a Utility object
class ClientB {

UtilityBase *utility_;
public:

10

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize(UtilityBase *utility) { utility_ = utility; }
void g(const ClientA &a) { a.f(*utility_); }

};

// Client that maintains pointers to UtilityFactory and Utility objects
class ClientC {

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC(const UtilityBaseFactory *utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory),
utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

The type of logic used in ClientC for determining when new objects should be created or when
objects should be reused and passed around is common in larger more complicated OO programs.

The above client classes demonstrate two different types of associations between objects: non-
persisting and persisting.

Non-Persisting associations exist only within a single function call and do not extend after the
function has finished executing. For example, objects of type ClientA and UtilityBase have
a non-persisting relationship through the function ClientA::f(const UtilityBase &utility).
Likewise, objects of type ClientB and ClientA have a non-persisting association through the func-
tion ClientB::g(const ClientA &a).

Persisting associations are where a relationship between two objects exists past a single function
call. The most typical kind of persisting association in an OO C++ program is where one object
maintains a private pointer data member to another object. For example, persisting associations
exist between a ClientC object, a UtilityBaseFactory and a UtilityBase object through the
the private C++ pointer data members ClientC::utilityFactory and ClientC::utility re-
spectively. Likewise, a persisting association exists between a ClientB object and a UtilityBase
object through the private pointer data member ClientB::utility .

Persisting relationships are significantly more complex than non-persisting relationships since
a persisting relationship usually implies that some objects must be responsible for the lifetime of
other objects. This is never the case in a non-persisting relationship as defined above.

11

Appendix E shows an example program that uses all of the C++ classes described above. The
program in Appendix E has several memory management problems. An astute reader will notice
that the UtilityBaseFactory created in main() gets deleted twice; once in the destructor for
the ClientC object c and again at the end of main() in an explicit call to operator delete. This
problem could be fixed in this program by arbitrating “ownership” of the UtilityBaseFactory
object to either main() or the ClientC object, but not both which is the case in Appendix E.

A more difficult memory management problem to catch and fix occurs in the ClientB and
ClientC objects regrading a shared UtilityBase object. When shareUtility is set to false
(by the user in the commandline arguments) the objects b1, b2 and c each own a pointer to differ-
ent UtilityBase objects and the software will correctly delete each dynamically allocated object
using one and only one call to operator delete (in the destructors of these classes). However,
when shareUtility is to set to true the objects b1, b2 and c will contain pointers to the same
UtilityBase object and operator delete will be called on this shared UtilityBase object multi-
ple times when b1, b2 and c are destroyed. In this case, it is not so easy to arbitrate ownership of
the shared UtilityBase object to the ClientB or the ClientC objects. Logic could be developed
in this simple program to insure that ownership was assigned properly but such logic would enlarge
the program, complicate maintenance, and would ultimately make the software components less
reusable. In more complex programs, trying to dynamically arbitrate ownership at run time is much
more difficult and error prone if done manually.

2.2 Refactored example C++ program using Teuchos::RCP

Now we describe how RCP can be used to greatly simplify dynamic memory management in these
types of OO programs. Appendix F shows the refactoring of the program in Appendix E to use RCP
for all persisting relationships. In general, refactoring software that uses raw C++ pointers to use
RCP is as simple as replacing the type T* with RCP<T>, where T is nearly any class or built-in data
type.

The first persisting relationship for which RCP is used is the relationship between a Utility-
BaseFactory object and a client that uses it. The refactoring changes the return type of Utility-
BaseFactory::createUtility() from a raw UtilityBase* pointer to a RCP<UtilityBase>
object. The new “Abstract Factory” class declarations (assuming that the symbols from the Teuchos
namespace are in scope so that explicit Teuchos:: qualification is not necessary) become

class UtilityBaseFactory {
public:

virtual RCP<UtilityBase> createUtility() const = 0;
};

class UtilityAFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new UtilityA()); }

12

};

class UtilityBFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new UtilityB()); }
};

In addition to the change of the return type, the refactoring also requires that calls to operator
new be wrapped in calls to the templated function Teuchos::rcp(...).

The refactoring shown in Appendix F does not impact the definition of the class ClientA since
this class does not have any persisting relationships with any other objects. However, the definitions
of the classes ClientB and ClientC do change and become

class ClientB {
RCP<UtilityBase> utility_;

public:
void initialize(const RCP<UtilityBase> &utility) { utility_=utility; }
void g(const ClientA &a) { a.f(*utility_); }

};

class ClientC {
RCP<UtilityBaseFactory> utilityFactory_;
RCP<UtilityBase> utility_;
bool shareUtility_;

public:
ClientC(const RCP<UtilityBaseFactory> &utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory),
utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h(const Ptr<ClientB> &b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

The first thing that one should notice about the refactored ClientB and ClientC classes is that
their destructors are gone. It turns out that the compiler-generated destructors do exactly the correct
thing (i.e. call the destructor on the RCP data members which in turns calls operator delete on the
underlying reference-counted object when the reference count goes to zero). The second thing that
one should notice is that the old default constructor ClientB::ClientB() which initialized the raw
C++ pointer utility to null is no longer needed since RCP has a default constructor that does that.
A third thing to notice about these refactored client classes is that the RCP objects are passed by
const reference (see Appendix D) and not by value as the corresponding raw pointers where in the

13

original unfactored classes. Passing RCP objects by const reference yields slightly more efficient
code and simplifies stepping through the code in a debugger. For example, a function declared as

void someFunction(RCP<A> a);

will always result in the copy constructor for RCP being called (and therefore stepped into in a
debugger) while this same function declared as:

void someFunction(const RCP<A> &a);

will often not require the copy constructor be called (except in cases where an implicit conversion
is being performed as described in Appendix B) and thereby easing debugging.

Lastly, above, the class Ptr is a Teuchos non-reference-counted smart pointer class designed to
avoid raw pointers. It is used for non-persisting associations where a raw pointer would otherwise
be used. Ptr initializes to NULL and in debug mode it will throw exception exceptions when
dereferencing NULL. Ptr plays a small role in the overall strategy to avoid all raw C++ pointers at
the application programming level.

As an aside, note that Appendix D gives recommended idioms for how to pass raw C++ objects
and RCP-wrapped objects to and from functions in a way that result in function prototypes becoming
as self documenting as possible, help to avoid coding errors and increase the readability of C++
code. Also, in addition to the benefit that RCP eases dynamic memory management, the selective
use of RCP and raw C++ object references extends the vocabulary of the C++ language by helping
to distinguish between persisting and non-persisting associations. For example, when a one sees a
function prototype where an object is passed through a RCP such as

class SomeClass {
public:

void someFunction(const RCP<A> &a);
}

one can automatically deduce that “memory” of the A object will be retained (through a private
RCP<A> data member in SomeClass no doubt) and that should automatically alter how the developer
plans on calling that function and passing the A object. The refactored C++ program in Appendix F
provides an example of how the idioms presented in Appendix D are put to use.

3 Additional and advanced features of RCP

The use cases for RCP described above comprise a large majority of the relavent use cases in most
programs, but there there are some other use cases that require additional and more advanced fea-

14

tures. Some of these additional features (the C++ declarations for which are shown in Appendix A)
are mentioned below:

1. Casting

RCP objects can be casted in a manner similar to casting raw C++ pointers and the same
types of conversion rules apply. Analogs of the built-in casts static cast<>, const cast<>
and dynamic cast<> are supported by the non-member templated functions rcp static -
cast<>, rcp const cast<> and rcp dynamic cast<> respectively. See Appendix B for
examples of how they are used.

2. Reference-count information

The function RCP::count() returns the number of RCP objects that point to the underlying
reference-counted object. This information can be useful in some cases.

3. Customized deallocation policies

The default behavior of RCP is to call operator delete on reference-counted objects once the
reference count goes to zero. While this is the most commonly needed behavior, there are
use cases where more specialized dellocation polices are required. For these cases, there is
an overloaded form of the templated function Teuchos::rcp(...) that takes a templated
deallocation policy object that defines how a reference-counted object is deallocated when
required.

4. Associating extra data with a reference-counted object

There are some more difficult use cases where certain types of information or other objects
must be bundled with a reference-counted object and must not be deleted until the reference-
counted object is deleted. The non-member templated functions set extra data<>(...)
and get extra data<>(...) serve this purpose (see item (6) in Appendix B). Note that
the extra data mechanism relies on an std::map and string comparisons etc. and can impart
some unacceptably high overhead in some use cases.

5. Embeddeding an object on creation of an RCP object

Similar to the use of extra data, the RCP class also supports the concept of an embedded
object. The functions rcpWithEmbeddedObj[PreDestroy,PostDestroy](...) (see 7 in
Appendix B) can be used create an RCP object and embedd any other value-type object in
the created RCPNode. This uses a customized deallocator class and imparts less overhead
than the extra data feature at the cost of being less flexible (i.e. you can can only embedd
a single value object and it must be done right when the first RCP object is created). The
advantage of this approach is that access of the embedded object using the get[Nonconst]-
EmbeddedObj(...) is faster than when using extra data but requires that you provide more
information.

6. Checking for memory leaks from circular references

15

In a debug build, the user can enable checking for memory leaks caused by circular references
among RCP objects. If cicular references do exist, then RCPNode objects that where created
but not removed are displaed at the end of a program. See the file Teuchos RCP.cpp for
details.

4 Summary

The templated C++ class RCP provides a low-overhead option for (almost) automatic memory man-
agement in C++. This class has been developed and refined over many years and has been in-
strumental in improving the quality of software projects that use it consistently (for example see
MOOCHO [1]). Careful use of RCP eliminates the need to manually call operator delete when
dynamically allocated objects are no longer needed. Furthermore, it helps to reduce the amount of
code that developers have to write. For example, most classes that use RCP for dynamically allocated
memory do not need developer-supplied destructors. This because the compiler-generated destruc-
tors do the exactly correct thing which is to call destructors on an object’s constituent data members.
This was demonstrated in the difference between the original and refactored classes ClientB and
ClientC described in Sections 2.1 and 2.2.

The class RCP also has advanced features not found in other smart-pointer implementations such
as the ability to attach extra data and the customization of the deallocation policy.

16

References

[1] R. A. Bartlett. MOOCHO : Multifunctional Object-Oriented arCHitecture for Optimization,
User’s Guide. Sandia National Labs, 2003.

[2] E. Gamma, R. Helm, R. Johnson, and John Vlissides. Design Patterns: Elements fo Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[3] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu, Tamara Kolda,
Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi Thorn-
quist, Ray Tuminaro, James Willenbring, and Alan Williams. An Overview of Trilinos. Tech-
nical Report SAND2003-2927, Sandia National Laboratories, 2003.

[4] Tamara K. Locke. Guide to preparing SAND reports. Technical report SAND98-0730, Sandia
National Laboratories, Albuquerque, New Mexico 87185 and Livermore, California 94550,
May 1998.

[5] S. Meyers. More Effective C++. Addison-Wesley, 1996.

[6] B. Stroustrup. The C++ Programming Language, special edition. Addison-Wesley, New York,
2000.

17

18

A C++ declarations for RCP

namespace Teuchos {

enum ENull { null };

enum EPrePostDestruction { PRE_DESTROY, POST_DESTROY };

template<class T>
class DeallocDelete { public: void free(T* ptr) { if(ptr) delete ptr; } };

template<class T>
class DeallocArrayDelete { public: void free(T* ptr) { if(ptr) delete [] ptr; } };

template<class T>
class RCP {
public:

typedef T element_type;
explicit RCP(T* ptr, bool owns_mem = true);
RCP(ENull null_arg = null);
RCP(const RCP<T>& r_ptr);
template<class T2> RCP(const RCP<T2>& r_ptr);
˜RCP();
RCP<T>& operator=(const RCP<T>& r_ptr);
T* operator->() const;
T& operator*() const;
T* get() const;
T* release();
int count() const;
void set_has_ownership();
bool has_ownership() const;
bool shares_resource(const RCP<T>& r_ptr) const;

private:
...

};

template<class T> RCP<T> rcp(T* p);
template<class T> RCP<T> rcp(T* p, bool owns_mem);
template<class T,

class Dealloc_T> RCP<T> rcp(T* p, Dealloc_T dealloc, bool owns_mem);
template<class T,

class Embedded> RCP<T> rcpWithEmbeddedObjPreDestroy(T* p,
const Embedded &embedded, bool owns_mem = true);

template<class T,
class Embedded> RCP<T> rcpWithEmbeddedObjPostDestroy(T* p,

const Embedded &embedded, bool owns_mem = true);
template<class T,

class Embedded> RCP<T> rcpWithEmbeddedObj(T* p,
const Embedded &embedded, bool owns_mem = true);

template<class T> bool is_null(const RCP<T>& p);
template<class T> bool operator==(const RCP<T>& p, ENull);
template<class T> bool operator!=(const RCP<T>& p, ENull);
template<class T2, class T1> bool operator==(const RCP<T1>& p1,

const RCP<T2>& p2);
template<class T2, class T1> bool operator!=(const RCP<T1>& p1,

const RCP<T2>& p2);

19

template<class T2, class T1> RCP<T2> rcp_implicit_cast(const RCP<T1>& p1);
template<class T2, class T1> RCP<T2> rcp_static_cast(const RCP<T1>& p1);
template<class T2, class T1> RCP<T2> rcp_const_cast(const RCP<T1>& p1);
template<class T2, class T1> RCP<T2> rcp_dynamic_cast(const RCP<T1>& p1,

bool throw_on_fail = false);
template<class T1, class T2> int set_extra_data(const T1 &extra_data,

const std::string& name, const Ptr<RCP<T2> > &p,
bool force_unique = true,
EPrePostDestruction destroy_when = POST_DESTROY);

template<class T1, class T2> const T1& get_extra_data(const RCP<T2>& p,
const std::string& name);

template<class T1, class T2> T1& get_nonconst_extra_data(const RCP<T2>& p,
const std::string& name);

template<class T1, class T2> T1* get_optional_extra_data(const RCP<T2>& p,
const std::string& name);

template<class T1, class T2> const T1* get_optional_extra_data(const RCP<T2>& p,
const std::string& name);

template<class Dealloc_T,
class T> const Dealloc_T& get_dealloc(const RCP<T>& p);

template<class Dealloc_T,
class T> Dealloc_T& get_nonconst_dealloc(const RCP<T>& p);

template<class Dealloc_T,
class T> const Dealloc_T* get_optional_dealloc(const RCP<T>& p);

template<class Dealloc_T,
class T> Dealloc_T* get_optional_nonconst_dealloc(const RCP<T>& p);

template<class TOrig,
class Embedded, class T> const Embedded& getEmbeddedObj(const RCP<T>& p);

template<class TOrig,
class Embedded, class T> Embedded& getNonconstEmbeddedObj(const RCP<T>& p);

} // namespace Teuchos

20

B RCP quick-start and reference

This appendix presents a short, but fairly comprehensive, quick-start for the use of RCP. The use
cases described here should cover the overwhelming majority of the use instances of RCP in a typical
program.

The following class hierarchy will be used in the C++ examples given below.

class A { public: virtual ˜A(){} A& operator=(const A&){} virtual void f(){} };
class B1 : virtual public A {};
class B2 : virtual public A {};
class C : virtual public B1, virtual public B2 {};

class D {};
class E : public D {};

All of the following code examples used in this appendix are assumed to be in the names-
pace Teuchos or have appropriate using Teuchos::... declarations. This removes the need to
explicitly use Teuchos:: to qualify classes, functions and other declarations from the Teuchos
namespace. Note that some of the runtime checks are denoted as “debug runtime checked” which
means that checking will only be performed in a debug build (that is one where the macro DEBUG
is defined at compile time).

1. Creation of RCP objects

(a) Initializing a RCP object to NULL

RCP<C> c_ptr;

or

RCP<C> c_ptr = null;

(b) Creating a RCP object using new

RCP<C> c_ptr = rcp(new C);

or

RCP<C> c_ptr(new C);

(c) Creating a RCP object to an array allocated using new[n]
See the class Teuchos::ArrayRCP.

(d) Initializing a RCP object to an object not allocated with new

C c;
RCP<C> c_ptr = rcp(&c,false);

21

(e) Copy constructor (implicit casting)

RCP<C> c_ptr = rcp(new C); // No cast
RCP<A> a_ptr = c_ptr; // Cast to base class
RCP<const A> ca_ptr = a_ptr; // Cast from non-const to const

(f) Representing constantness and non-constantness

i. Non-constant pointer to non-constant object
RCP<C> c_ptr;

ii. Constant pointer to non-constant object
const RCP<C> c_ptr;

iii. Non-Constant pointer to constant object
RCP<const C> c_ptr;

iv. Constant pointer to constant object
const RCP<const C> c_ptr;

2. Reinitialization of RCP objects (using assignment operator)

(a) Resetting from a raw pointer

RCP<A> a_ptr;
a_ptr = rcp(new A());

(b) Resetting to null

RCP<A> a_ptr = rcp(new A());
a_ptr = null; // The A object will be deleted here

(c) Assigning from a RCP object

RCP<A> a_ptr1;
RCP<A> a_ptr2 = rcp(new A());
a_ptr1 = a_ptr2; // Now a_ptr1 and a_ptr2 point to same A object

3. Accessing the reference-counted object

(a) Access to object reference (debug runtime checked)

C &c_ref = *c_ptr;

(b) Access to object pointer (unchecked, may return NULL, NOT RECOMMENDED)

C *c_rptr = c_ptr.get();

(c) Access to object pointer (debug runtime checked, will not return NULL, NOT REC-
OMMENDED)

C *c_rptr = &*c_ptr;

(d) Access of object’s member (debug runtime checked)

c_ptr->f();

(e) Testing for non-null

22

if(!is_null(a_ptr)) std::cout << "a_ptr is not null!\n";

or

if(a_ptr != null) std::cout << "a_ptr is not null!\n";

(f) Testing for null

if(is_null(a_ptr)) std::cout << "a_ptr is null!\n";

or

if(a_ptr == null) std::cout << "a_ptr is null!\n";

4. Casting

(a) Implicit casting (see copy constructor above)

i. Using copy constructor (see above)
ii. Using conversion function

RCP<C> c_ptr = rcp(new C); // No cast
RCP<A> a_ptr = rcp_implicit_cast<A>(c_ptr); // To base
RCP<const A> ca_ptr = rcp_implicit_cast<const A>(a_ptr);// To const

(b) Casting away const

RCP<const A> ca_ptr = rcp(new C);
RCP<A> a_ptr = rcp_const_cast<A>(ca_ptr); // cast away const!

(c) Static cast (no runtime check)

RCP<D> d_ptr = rcp(new E);
RCP<E> e_ptr = rcp_static_cast<E>(d_ptr); // Unchecked, unsafe?

(d) Dynamic cast (runtime checked, failed cast allowed)

RCP<A> a_ptr = rcp(new C);
RCP<B1> b1_ptr = rcp_dynamic_cast<B1>(a_ptr); // Checked, safe!
RCP<B2> b2_ptr = rcp_dynamic_cast<B2>(b1_ptr); // Checked, safe!
RCP<C> c_ptr = rcp_dynamic_cast<C>(b2_ptr); // Checked, safe!

(e) Dynamic cast (runtime checked, failed cast not allowed)

RCP<A> a_ptr1 = rcp(new C);
RCP<A> a_ptr2 = rcp(new A);
RCP<B1> b1_ptr1 = rcp_dynamic_cast<B1>(a_ptr1,true); // Success!
RCP<B1> b1_ptr2 = rcp_dynamic_cast<B1>(a_ptr2,true); // Throw std::bad_cast!

23

5. Customized deallocators

(a) Creating a RCP object with a custom deallocator

RCP<C> c_ptr = rcp(new C[N],DeallocArrayDelete<C>(),true);

(b) Access customized deallocator (runtime checked, throws on failure)

const DeallocArrayDelete<C>
&dealloc = get_dealloc<DeallocArrayDelete<C> >(c_ptr);

(c) Access optional customized deallocator

const DeallocArrayDelete<C>
*dealloc = get_optional_dealloc<DeallocArrayDelete<C> >(c_ptr);

if(dealloc) std::cout << "This deallocator exits!\n";

6. Managing extra data

(a) Adding extra data (post destruction of extra data)

set_extra_data(rcp(new B1),"A:B1",&a_ptr);

(b) Adding extra data (pre destruction of extra data)

set_extra_data(rcp(new B1),"A:B1",&a_ptr,PRE_DESTORY);

(c) Retrieving extra data

get_extra_data<RCP<B1> >(a_ptr,"A:B1")->f();

(d) Resetting extra data

get_extra_data<RCP<B1> >(a_ptr,"A:B1") = rcp(new C);

(e) Retrieving optional extra data

const RCP<B1> *b1 = get_optional_extra_data<RCP<B1> >(a_ptr,"A:B1");
if(b1) (*b1)->f();

7. Embedded objects

(a) Creating an RCP object with embedded data

RCP<D> d_ptr(new D);
RCP<A> a_ptr rcpWithEmbeddedObj(new C, rcp(new D));

(b) Extract reference to const embedded object

const RCP<D> &d_ptr = getEmbeddedObj<C,RCP<D> >(a_ptr);

(c) Extract reference to nonconst embedded object

RCP<D> &d_ptr = getNonconstEmbeddedObj<C,RCP<D> >(a_ptr);
d_ptr = null; // Sets the actual embedded RCP<D> object in a_ptr to null!

24

C Commandments for the use of RCP

Here are listed commandments for the use of RCP. These commandments reinforce some of the
material in the quick-start in Appendix B. Along with each commandment is one or more anti-
commandments stating the negative of the commandment. C++ code fragments are also included to
demonstrate each commandment and anti-commandment.

Commandment 1 Thou shall put a pointer for an object allocated with operator new into a RCP
object only once. The best way to insure this is to call operator new directly in a call to rcp(...)
to create a dynamically allocated object that is to be managed by a RCP object. See item (1b) in
Appendix B.

Anti-Commandment 1 Thou shall never give a raw C++ pointer returned from operator new to
more than one RCP object.

Example:

A *ra_ptr = new C;
RCP<A> a_ptr1 = rcp(ra_ptr); // Okay
RCP<A> a_ptr2 = rcp(ra_ptr); // no, No, NO !!!!

Anti-Commandment 2 Thou shall never give a raw C++ pointer to an array of objects returned
from operator new[] to a RCP object using rcp(new C[n]).

Example:

RCP<std::vector<C> > c_array_ptr1 = rcp(new std::vector<C>(N)); // Okay
RCP<C> c_array_ptr3 = rcp(new C[n]); // no, No, NO!

Commandment 2 Thou shall only create a NULL RCP object by using the default constructor or
by using the null enum (and its associated special constructor) (see item (1a) in Appendix B).
Trying to assign to NULL or 0 will not compile.

Anti-Commandment 3 Thou shall not create a NULL RCP object using the templated function
rcp(...) since it is very verbose and complicates maintenance.

Example:

25

RCP<A> a_ptr1 = null; // Yes :-)
RCP<A> a_ptr2 = rcp<A>(NULL); // No, too verbose :-(

Commandment 3 Thou shall only pass a raw pointer for an object that is not allocated by operator
new (e.g. allocated on the stack) into a RCP object by using the templated function rcp<T>(T*
p, bool owns mem) and setting owns mem to false (see item (1d) in Appendix B).

Anti-Commandment 4 Thou shall never pass a pointer for an object not allocated with operator
new into a RCP object without setting owns mem to false.

Example:

C c;
RCP<A> a_ptr1 = rcp(&c,false); // Yes :-)
RCP<A> a_ptr2 = rcp(&c); // no, No, NO !!!!

Commandment 4 Thou shall only cast between RCP objects using the default copy constructor
(for implicit conversions) and the nonmember template functions rcp implicit cast<>(-
...),rcp static cast<>(...),rcp const cast<>(...) and rcp dynamic cast<>(-
...) (see item (4) in Appendix B).

Anti-Commandment 5 Thou shall never convert between RCP objects using raw pointer access.

Example:

RCP<A> a_ptr = rcp(new C);
RCP<B1> b1_ptr1 = rcp_dynamic_cast<B1>(a_ptr); // Yes :-)
RCP<B1> b1_ptr2 = rcp(dynamic_cast<B1*>(a_ptr.get())); // no, No, NO !!!

26

D Recommendations for passing objects to and from C++ functions

Below are recommended idioms for passing required1 and optional2 arguments into and out of
C++ functions for various use cases and different types of objects. These idioms show how to write
function prototype argument declarations which exploit the C++ language in a way that makes these
function prototypes as self documenting as possible, avoids coding errors, and increases readability3

of C++ code. In general, RCP<T> objects should be passed and manipulated as though they where
raw C++ pointer T* objects. However, while raw C++ pointer objects should generally be passed
by value, RCP objects should generally be passed by reference for several reasons.

Argument purpose Non-Persisting Persisting

non-changeable object (required1)

.

S s
or
const S s
or
const S &s

const RCP<const S> &s

non-changeable object (optional2) const Ptr<const S> &s const RCP<const S> &s
changeable object const Ptr<S> &s const RCP<S> &s

C++ declarations for passing small concrete objects (i.e. with value semantics) to and from functions
where S is a place holder for an actual built-in or user-defined data type.

Argument purpose Non-Persisting Persisting
non-changeable object (required1) const A &a const RCP<const A> &a
non-changeable object (optional2) const Ptr<const A> &a const RCP<const A> &a
changeable object const Ptr<A> &a const RCP<A> &a

C++ declarations for passing abstract objects (i.e. with reference or pointer semantics) or large
concrete objects (i.e. that are too expensive to copy) to and from functions where A is a place holder
for an actual abstract C++ base class.

1Required arguments must be bound to valid objects (i.e. can not be NULL)
2Optional arguments may be NULL in some cases
3What makes code more “readable” is subjective of course.

27

28

E Listing: Example C++ program using raw dynamic memory man-
agement

#include "example_get_args.hpp"

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual UtilityBase* createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityA(); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

UtilityBase* createUtility() const { return new UtilityB(); }
};

// Client classes
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};
class ClientB {

UtilityBase *utility_;
public:

ClientB() : utility_(0) {}
˜ClientB() { delete utility_; }
void initialize(UtilityBase *utility) { utility_ = utility; }
void g(const ClientA &a) { a.f(*utility_); }

};
class ClientC {

29

const UtilityBaseFactory *utilityFactory_;
UtilityBase *utility_;
bool shareUtility_;

public:
ClientC(const UtilityBaseFactory *utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

˜ClientC() { delete utilityFactory_; delete utility_; }
void h(ClientB *b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

// Main program
int main(int argc, char* argv[])
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
UtilityBaseFactory *utilityFactory = 0;
if(useA) utilityFactory = new UtilityAFactory();
else utilityFactory = new UtilityBFactory();
// Create clients
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);
// Cleanup memory
delete utilityFactory;

}

30

F Listing: Refactored example C++ program using RCP

#include "Teuchos_RCP.hpp"
#include "example_get_args.hpp"

// Inject symbols for RCP so we don’t need Teuchos:: qualification
using Teuchos::RCP;
using Teuchos::rcp; // Warning! This can be dangerous and is not to be used in general!
using Teuchos::Ptr;

// Abstract interfaces
class UtilityBase {
public:

virtual void f() const = 0;
};
class UtilityBaseFactory {
public:

virtual RCP<UtilityBase> createUtility() const = 0;
};

// Concrete implementations
class UtilityA : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityA::f() called, this="<<this<<"\n"; }
};
class UtilityB : public UtilityBase {
public:

void f() const { std::cout<<"\nUtilityB::f() called, this="<<this<<"\n"; }
};
class UtilityAFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new UtilityA()); }
};
class UtilityBFactory : public UtilityBaseFactory {
public:

RCP<UtilityBase> createUtility() const { return rcp(new UtilityB()); }
};

// Client classes
class ClientA {
public:

void f(const UtilityBase &utility) const { utility.f(); }
};
class ClientB {

RCP<UtilityBase> utility_;
public:

void initialize(const RCP<UtilityBase> &utility) { utility_=utility; }

31

void g(const ClientA &a) { a.f(*utility_); }
};
class ClientC {

RCP<const UtilityBaseFactory> utilityFactory_;
RCP<UtilityBase> utility_;
bool shareUtility_;

public:
ClientC(const RCP<const UtilityBaseFactory> &utilityFactory, bool shareUtility)
:utilityFactory_(utilityFactory)
,utility_(utilityFactory->createUtility())
,shareUtility_(shareUtility) {}

void h(const Ptr<ClientB> &b) {
if(shareUtility_) b->initialize(utility_);
else b->initialize(utilityFactory_->createUtility());

}
};

// Main program
int main(int argc, char* argv[])
{

// Read options from the commandline
bool useA, shareUtility;
example_get_args(argc,argv,&useA,&shareUtility);
// Create factory
RCP<UtilityBaseFactory> utilityFactory;
if(useA) utilityFactory = rcp(new UtilityAFactory());
else utilityFactory = rcp(new UtilityBFactory());
// Create clients
ClientA a;
ClientB b1, b2;
ClientC c(utilityFactory,shareUtility);
// Do some stuff
c.h(&b1);
c.h(&b2);
b1.g(a);
b2.g(a);

}

32

